Directory

1、	Introduction to basic application of servo driver	2
2,	Introduction to built-in PLC functions	
	2.1 Description of PLC related parameters	4
	2.2 Introduction to PLC software components	4
	2.2.1 Detailed introduction of X soft component, Y soft component and I	V soft
	component	5
	2.2.2 Introduction to Zone D.	6
	2.2.3 Introduction to other software components.	6
3,	Use the built-in PLC servo drive motor to move at a fixed speed	7
	3.1 Brief introduction of servo speed mode.	7
	3.2 Introduction to inching function	9
	3.3 Common input function bits.	9
	3.4 Common output function bits.	10
	3.5 Common control parameters.	10
	3.6 Common monitoring parameters.	11
	3.7 Servo speed mode parameter setting process.	
	3.8 Mitsubishi PLC programming case.	11
4、	Positioning control with built-in PLC servo control motor	12
	4.1 Brief introduction of servo position mode.	12
	4.2 Introduction to electronic gear ratio	15
	4.3 Positioning function parameter setting process	16
	4.4 Introduction to inching function	16
	4.5 Zero return function introduction	17
	4.6 Zero return function setting process	19
	4.7 Common input function bits	20
	4.8 Common output function bits	20
	4.9 Common setting parameters	20
	4.10 Common monitoring parameters	21
	4.11 Mitsubishi PLC programming case	21
	4.11.1 Positioning case (motor is 2500 line incremental encoder motor)	21

1、Introduction to basic application of servo driver

The servo driver mainly has three working modes: position mode, speed mode and torque mode.

The position mode takes the motor target position as the control target. The position command can be given by external pulses. The number of pulses determines the final motor target position, and the pulse frequency determines the motor rotation speed. The position instruction can also be given by the internal position instruction planning. The user sets the final target position, target speed, acceleration and deceleration time, and triggers the action by inputting the function bits.

The speed control takes the motor speed as the control target. Speed command can be set by analog voltage or parameter.

The torque control takes the motor output torque as the control target. Torque command can be set by analog voltage or parameter.

Each mode is controlled by the corresponding control parameter Pxx.xx and the corresponding input function bit INFnxxx, and the operation results will be output to the corresponding monitoring parameter Pxx.xx and output function bit OUTNxxx.

The control parameters (Pxx. xx) can be set through VECOserve, modbus master station, keyboard or (Dxxx) through PLC program assignment. The last setting shall prevail.

The input functional bit (INFn. xxx) can be bound to the entity input terminal (DIx), and the entity input terminal drives the input functional bit.

For example, P06.01=1 means that the input function bit INFn.001 (enable) is bound to DI1, and the input terminal DI1 drives INFn001.When DI1 is activated, INFn001 (enable) is activated.

For example, P06.02=1 is to bind the input function bit INFn001 (enable) to DI2. INFn001 is driven by input terminal DI2. When DI2 is activated, INFn001 (enable) is activated.

The same input functional bit INFn cannot be bound to two DIs. If two DI terminals drive the same input functional bit, there will be conflicts.

The input function bit can also be directly operated through Mxxx of PLC. If an input function bit has been bound to the entity DIx, the PLC will not be able to operate the input function bit through Mxxx, that is, the entity terminal has the highest priority to operate the input function bit.

Monitoring parameters (Pxx. xx) can be displayed on the panel or obtained by reading Dxxx of PLC.

The output function bit (OUTFN. xxx) can be bound to the physical output terminal (DOx) to output its effective status, or can be obtained through Mxxx of the PLC.

(1) Simple application example of speed mode.

If you want the motor to move at 500 rpm. The following parameters need to be set:

P02.01=1(Select speed mode)

P04.01=0(Speed command comes from main speed command A)

P04.02=0(The main speed command A comes from P04.03)

P04.03=500(Set the value of main speed command A)

Then activate the input function bit INFn.001 (enable motor), and the motor will rotate at 500rpm. The real-time speed of the motor is displayed by P09.09.

(2) Simple application example of position mode. If you want to make the motor rotate 10 times in the forward direction through a signal trigger, the rotation speed is 2000 rpm. The following parameters need to be set: P02.01=0(Select position mode) P03.01=1(The location instruction comes from the internal planning location) P03.08=0 P03.10=10000(Set 10000 position command units to rotate the motor for 1 turn) P13.01=0(Stop after single trigger movement) P13.02=1(Running section 1 position after triggering) P13.05=1(Run in relative position mode) P13.10=10 0000 (The position command is 10 cycles in the positive direction, and it is set to - 100000 in the negative direction) P13.12=2000 (Command speed is 2000rpm)

Then activate the input function bit INFn.001 (enable motor). The rising edge triggers the INFn27 motor to rotate for 10 cycles in the positive direction.

2、 Introduction to built-in PLC functions

VC600 series servo adds PLC function on the basis of general servo, and PLC function is enabled through parameter P01.90=1. The PLC program is developed, downloaded and tested through GX Works 2. PLC supports ladder language programming. VC600 also supports parsing RS instructions in various formats. The parsed data is placed in the parameters and provided to the PLC for use. For the RS instruction parsing function, refer to VC600 RS Instruction Parsing Introduction.

The CN5 monitoring port (serial port 1) of the VC600 series servo can be used as the servo monitoring port to communicate with VECobserver, as the PLC download debugging port to communicate with GX Works2, and as the RS command receiving port to communicate with the RS upper computer, which can be selected through parameter P01.91. When connecting CN5 monitoring port (serial port 1), you need to set P01.91 correctly to communicate with relevant software.

VC600 series servo adds an RS232 interface (serial port 2) in the CN1 network port to realize RS command communication with the machine tool. Select the serial port from which the RS instruction originates through P01.94. The signals of the CN1 network interface are defined as follows.

The operation of the PLC program is controlled by INFn171. Under the default parameter P06.04=171, DI4 controls the start and stop of the PLC. P06.24=1, the DI level is reversed, so the system defaults to PLC operation without wiring.

CN1 signal definition

Pin	Define	Explanation
1	CANH	High signal of CAN bus
2	CANL	Low signal of CAN bus
3	GND	Power supply ground
4	SG+	RS485 signal positive
5	SG-	RS485 signal is negative
6	TXD	Data transmission
7	RXD	Data reception
8	GND	Power supply ground

2.1 Description of PLC related parameters

Parameter	Parameter Description	set range	Default	Read Write	Effective					
No		SetTange	Derdurt	Туре	method					
	PLC function enabling parameters	0~1	0	RW	immediately					
P01.90	0-PLC function is not enabled									
	1-Enable PLC functions									
	Serial port 1 (micro usb) protocol	0~2	0	RW	immediately					
	type	02	0	K V V	inneulately					
P01.91	0-VEC debugging software protocol									
	1-PLC program download protocol									
	2-RS instruction protocol									
	PLC non-standard function	0~1	0	RW	immediately					
P01.93	0-General RS function									
	1-Non standard RS instruction parsing function									
	Serial port source of RS instruction	0~1	0	RW	immediately					
P01.94	0-Serial port 2 (RS232 in the network p	0-Serial port 2 (RS232 in the network port)								
	1-Serial port 1 (RS232 in the monitoring port)									

Special note: By default, the driver is P06.04 (DI4 function configuration)=171 (PLC operation DI function number), P06.24 (DI4 level)=1, and the DI level is reversed. Therefore, the system defaults to PLC operation when there is no wiring.

2.2 \ Introduction to PLC software components

The content of this section is very important, which is related to the programming of built-in PLC. The PLC contains the following software components.

element	describe	Drive internal starting address	Drive internal end address	Universal Start Address	Universal End Address	Start address of power-off storage	End address of power-off storage
М	Auxiliary relay	0	511	512	3071	512	1535
C16 bit	Counter			0	199	100	199
C32 bit	High speed counter			200	255	200	255
Т	Timer			0	255	246	255
D	Data register	0	2047	2048	7999	2048	3071
x	Input relay			0	10		
Y	Output relay			0	6		

2.2.1 Detailed introduction of X soft component, Y soft component and

M soft component.

X0~X9 The valid state of the physical DI terminals DI1~DI10 of the corresponding driver. Y0~Y5 The effective state of the physical DO terminals DO1~DO6 of the corresponding driver.

M0~M511 are the input and output function bits inside the driver. It has specific functions. Among them, M41~M116 correspond to the servo input function bits INFn01~INFn76; The fixed offset address of INFn is 40. M141~M173 correspond to servo output function bits OUTN01~OUTN33; The fixed offset address of OUTFn is 140. Other input function bits of M0~M511 are reserved for servo use. M512~M1535 are universal M-bits, which can be maintained in case of power failure. M1536~M3071 are universal M bits, which will be lost in case of power failure.

(1) Application example 1.

When DI1 is activated, the servo driver is enabled.

(2) Application example 2.

When DI2 is activated, internal planning location execution is triggered.

2.2.2 Introduction to Zone D.

D0~D2047 correspond to servo parameters P00.00-P20.47. Some parameters have not been used yet and are reserved for servo.

D2048~D3071 are the addresses maintained during power failure.

D3072~D7999 are addresses lost during power failure.

(1) Application example 1.

Run PLC program to automatically assign 500 to D403, that is, servo parameter P04.03=500.

(2) Application example 2.

After running PLC program and closing M1600, power off and power on again. The value of D2500 is still 500. Because the D2500 has the power down holding function.

2.2.3 Introduction to other software components.

FX3U •	FX3UC	Programmable	controller
--------	-------	--------------	------------

100ms type	10ms type	1ms Cumulative*4	100ms Cumulative*4	1ms type
0. 1~3276. 7 sec	0. 01~327. 67 sec	0. 001~32. 767 sec	0. 1~3276. 7 sec	0. 001~32. 767 sec
T0~T199 200 point For subprogram T192~T199	T200~T245 46 point	T246~T249 For 4-point execution interrupt saving * 4	T250~T255 6 points hold * 4	T256~T511 256 point

T0~T245 are general T positions, which will be lost in case of power failure.

T246~255 is the general T position, which will be maintained after power failure.

(1) Application Example 1

Run the PLC program and close M1600. T246 starts counting. When the value reaches 1000, T246 is valid and remains at 1000. Generally, the count value of T246 should be cleared within one cycle after running.

3、 Use the built-in PLC servo drive motor to move at a

fixed speed

3.1 Brief introduction of servo speed mode.

Speed mode is a control mode with motor speed as the control target. It is commonly used for driving the spindle. Speed command can be set through analog voltage or parameters. The realization of speed mode is shown in the figure below.

Servo has two speeds to choose from, namely main speed A and auxiliary speed B. These two speeds can be superimposed or switched with each other. Both primary speed A and secondary speed B have multiple speed sources. As shown in the figure below.

By default, P04.01=0, P04.02=0. The speed command (rpm) is set by P04.03. If P04.03 is positive, it will rotate forward, and if P04.03 is negative, it will reverse.

Relevant parameters are as follows:

Parameter No	Parameter Description	Set range	unit s	Set method	Effective way	Defaults	read and write method			
P04.01	Speed source	0~7	-	Run Settings	immediately	0	RW			
	Select the speed command source. O- Main speed A 1- Auxiliary speed B 2- Through INFn. 12 Perform A/B switching 3- A+B 4- Communication 5- Multistage speed 6- UP/DOWN speed mode									
	7- Internal sine wave									
P04.02	Source of main speed A	0~4	-	Run Settings	immediately	0	RW			
	0- 0-From P04.03 1- From AI1 2- From AI2									
	3- From AI3 4- From pulse rate									
P04. 03		-32767 [~] 32767	rpm	Run Settings	immediately	500	RW			
P04. 03	4- From pulse rate Setting value of main	32767		Settings						
P04. 03 P04. 04	4- From pulse rate Setting value of main speed A	32767		Settings gital given so						
	4- From pulse rate Setting value of main speed A When the main speed A so Auxiliary speed B	32767 purce selec 0~4	ts the di	Settings gital given so P04.03. Run Settings	immediately	speed command	value throug			

	through PO4.05.	through PO4.05.							
P08.17	Speed communication	-32767^{\sim}	rpm	Run	immediately	0	RW		
	setting	32767		Settings					
	In speed control mode,	In speed control mode, the source of speed command is communication timing, and the speed command							
	value is set.								

If the speed command comes from AIx, please refer to "6.3.1 Analog Input AI" in the instruction manual of VIKODA servo for details.

3.2 Introduction to inching function

The inching function is widely used in the field. The operator often uses the inching function when trying to run the material to a certain position manually. There are two kinds of inching: forward inching and reverse inching, respectively through INFn 09 and INFn 10 Control. INFn 09 or INFn When 10 is valid, the speed output will stack a jogging speed P04.16 on the basis of the current speed command.

3.3 Common input function bits.

No.	Bit description
	Enable the servo controller after activation, otherwise disconnect the
INFn.01	enable
INFn.02	Rising edge reset servo controller
INFn.09	The speed output will superimpose a positive inching speed PO4.16 on the
INFI1.09	current speed command
INFn.10	The speed output will superimpose a reverse jogging speed PO4.16 on the
INFILIO	current speed command
INFn.11	The speed command will be reversed on the original basis.
INFn.13	The speed command is set to zero directly.

XX in (INFn. XX) is the parameter value of the sixth group of DIX function control registers

3.4 Common output function bits.

No.	Bit description
OUTFn.01	When the servo controller is enabled, OUTFN.01 is valid
	When the absolute value of the actual output speed PO4.21 is greater
OUTFn.02	than the speed threshold PO4.23, the speed reaches the signal OUTFn.02
	Valid.
OUTFn.05	When the amplitude of the actual output speed PO4.21 is less than the
00111.03	zero speed threshold PO4.25, the zero speed signal OUTFn.05 is valid.
OUTFn.07	When the actual output speed PO4.21 is greater than the zero speed
00111.07	threshold, the forward rotation signal OUTFn.07 is valid
OUTFn.08	When the actual output speed PO4.21 is less than the negative zero speed
001Fn.08	threshold, the reverse signal OUTFN.08 is valid
	When the difference between the actual output speed PO4.21 and the speed
OUTFn.32	given command is less than the speed consistency threshold PO4.24, the
	speed consistency signal OUTFn.32 Valid

XX in (OUTFN. XX) is the parameter value of the sixth group of DOX function control registers

3.5 Common control parameters.

Parameter No	Parameter Description	Set range	units	Set method	Effective way	Defaults	read and write method					
P04.03	Setting value of main	-32767^{\sim}	rpm	Run Settings	immediately	0	RW					
	speed A	32767										
	When the main speed A source selects the digital given source, set the speed command value through P04.03.											
P04.16	Jog speed	0~32767	rpm	Run Settings	immediately	20	RW					
	When using the DI inching function, set the inching operation speed command value.											
		~~~~ <b>~</b>				- 0.0						
P04.17	Acceleration time	0~32767	ms	Run Settings	immediately	500	RW					
	Time for speed command to accelerate from 0 to rated speed.											
P04.18	Deceleration time	0~32767	ms	Run Settings	immediately	500	RW					
	The time when the spee	d command d	Deceleration time 0.52707 ins Run settings Immediately 500 Rw   The time when the speed command decelerates from the rated speed to 0. 0. 0. 0. 0. 0.									

### 3.6 Common monitoring parameters.

No.	Parameter Description	set range	unit	Reading and writing mode
P04.21	Display the filtered	$0^{\sim}32767$	rpm	RO
	value of speed			
P09.09	Real time speed	0~32767		RO
	monitoring	0 32707	rpm	

### 3.7 Servo speed mode parameter setting process.



This flow chart means that the driver control mode selects the speed mode. The speed comes from the main speed A, and the main speed A comes from P04.03.

### 3.8 Mitsubishi PLC programming case.



Case description:

Set the drive control mode to speed mode, the speed comes from speed A, speed A comes

from P04.03, P04.03 is set to 500, that is, the motor will run at the speed of 500 rpm/min after enabling. There is also a jog function. When (INFn. 09) or (INFn. 10) is valid, the speed output will superimpose a jog speed P04.16 on the current speed command.

This PLC programming case is compiled according to the "Servo speed mode parameter setting process". Press Un000 on the panel to check whether the speed is correct.

M1004	Used to configure drive control mode to	M8000	Used to configure speed mode
	speed mode		parameters
X001	Used to enable servo driver	X002	Reset the servo driver
			(fault can also be reset)
X003	Positive inching button	X004	Reverse inching button

### 4 Positioning control with built-in PLC servo control

#### motor

### 4.1 Brief introduction of servo position mode.

Position mode is a control mode that takes the target position of the motor as the control target, and is often used to achieve high-precision positioning. The position command can be given by external pulses. The number of pulses determines the final motor target position, and the pulse frequency determines the motor rotation speed. The position instruction can also be given by the internal position instruction planning. The user sets the final target position, target speed and acceleration/deceleration time, and triggers the action by entering the function bit INFn27. The position mode is implemented as shown in the figure below.



The position instructions in the above figure can be derived from pulse instructions or internal planning position instructions. Only instructions from internal location planning are introduced here. That is to say, the user sets the size of the user's position command, the command speed, and the acceleration/deceleration time. After the trigger position is executed, the motor acts according to the setting. After the action is completed, the positioning completion signal is output.

No.	Parameter	set	unit	Set	Effective	Defaults	Reading and
NO.	Description	range	unit	method	way	Defaults	writing mode
P03.01	Position command	0~6	-	Run	immediately	0	RW
	source			Settings			
	0- From external pulse	e comman	d				
	1- From internal mult	segment	locatior	n planning	(internal plann	ning location	instruction)
	2~6 Refer to the detailed instructions						
	•						

There are two kinds of internal planning position instructions: absolute position instruction and relative position instruction, both of which are called user position instructions.

The absolute position command refers to the position relative to the zero point. Before going to the absolute position command, you must return to zero to calibrate the zero point of the absolute position, while the relative position command refers to the position relative to the current position.

For example, suppose three absolute position commands are used, the size of the first segment is set to 10000, the size of the second segment is set to 20000, and the size of the third segment is set to 0. First, carry out the zero return operation, and then trigger the motor to move to the position of 3 sections. The motor moves to 10000 in the positive direction, 10000 in the positive direction, 20000 in the reverse direction, and finally returns to zero.

For another example, suppose to go through 3 segments of relative position command, the first segment of position command is set to 10000, the second segment of position command is set to 20000, and the third segment of position command is set to - 10000. After triggering the multi segment position, the motor moves forward for 10000, then forward for 20000, and then backward for 10000.

The positioning action is triggered by INFn27. After positioning, OUTFn.13 is effective. The positioning completion output condition can be set through parameter P03.45.

	Paran		set		Set	Effective		Reading and
No.				unit			Defaults	_
	Descri	iption	range		method	way		writing mode
P13.01	Multi	segment	0~2	-	Disable	immediately	0	RW
	location	(internal			setting			
	planning	location)						
	working m	ode						
	0- Shutdov	wn after sing	gle operat	ion				
	1 - Cyclic o	peration						
	2- DI swite	ches operat	ion and r	eads th	ne values o	of INFn.31, IN	Fn.30, INFn.29	and INFn.28 as
	segment n	umbers for o	operation					
P13.02	Total nu	mber of	1~16	-	Run	immediately	16	RW
	segments				Settings			
P13.03	Idle wait	ing time	0~1	-	Run	immediately	1	RW

The parameters related to the setting of the internal planning position command are shown in the following table.

	unit			Settings			
	0- millisecond						
	1- second						
P13.05	Absolute or relative	0~1	-	Run	immediately	1	RW
	position command setting			Settings			
	0- Absolute position co	mmand			1 1		
	1- Relative position co	mmand					
P13.10	Number of position	-21474	User	Run	immediately	10000	RW
	commands of the	83647	unit	Settings			
	first segment	~					
		21474					
		83647					
P13.12	Running speed of	0~327	rpm	Run	immediately	500	RW
	the first segment	67		Settings			
P13.13	position	0~327		Run	immediately	500	RW
P15.15	Running acceleration time of the first	67	ms	Settings	initieulately	500	K VV
	segment position	07		Settings			
P13.90	Running	0~327	ms	Run	immediately	500	RW
1 20:00	deceleration time of	67		Settings	, , , , , , , , , , , , , , , , , , , ,	500	
	the first segment						
	position						
P13.14	The idle time of the	0~327	ms	Run	immediately	1	RW
	first segment is	67	(s)	Settings			
	generally set to 0						

No.	Parameter Description	set range	unit	Set method	Effective way	Defaults	Reading and writing mode	
	Positioning completion output conditions	0~3	-	Run Settings	immediately	0	RW	
	In the position control	mode, wł	nen the	servo is run	ning, the abso	olute value of p	osition error	
	P03.17 is within the se	t value of	P03.46	(positioning	g completion t	hreshold), and	P03.49	
	(positioning completio	n/approa	ching tii	me threshol	d) is maintain	ed, the servo c	an output the	
P03.45	positioning completion	n signal; T	he outp	ut conditior	n of positionin	g completion s	ignal can be set	
	through P03.45.							
	0 - Output when the p	osition eri	ror is les	ss than the p	positioning co	mpletion thres	hold, otherwise	
	clear the output;							
	1-Output when the po	sition error is less than the positioning completion threshold and the						
	speed command P03.9	95 in the p	osition	mode is zer	o, otherwise t	he output is cl	eared;	
	2 - Output when the p	osition er	ror is les	ss than the p	positioning co	mpletion thres	hold and the	

	filtered speed command P03.96 in the position mode is zero, otherwise the output is cleared; 3-Output when the position error is less than the positioning completion threshold and the							
	speed command P03.95 is zero in the position mode, and clear the output when the speed command P03.95 is not zero in the position mode							
202.46	Positioning completion threshold	0~327 67	0.00 01 week	Run Settings	immediately	10	RW	
P03.46	Set the threshold value of the absolute value of the position deviation when the servo driver outputs the positioning completion signal. (The positioning completion signal is only valid when the servo driver is in the position control mode and in the running state)							

### 4.2 Introduction to electronic gear ratio

The electrnic gear ratio is used to convert the user's position command unit to the motor encoder's position unit. It has two settings.

(1) The first is to set how many user position commands are required to make the motor rotate for 1 circle, or how many user position commands are required to make the motor rotate for 1 circle. Set P03.08=0, P03.10 value is the user position command value to make the motor rotate for 1 turn.

The second is to directly set the numerator and denominator of the electronic gear ratio. I.e

User position command  $\times \frac{\text{Electronic gear ratio numerator}}{\text{Electronic gear ratio denominator}} = \text{Location of motor encoder}$ 

For example, if a 17 digit absolute value motor goes to the internal multi segment position and 10000 user positions are specified to command the motor to rotate for one circle, then the electronic gear ratio numerator is set to 131072, and the electronic gear ratio is set to 10000 respectively.

No.	Parameter Description	set range	unit	Set method	Effective way	Defaults	Reading and writing mode
P03.08	Electronic gear ratio 1 molecule	1~21474 83647	-	Run Settings	immediately	1000	RW
	Set the numerator division/multiplicat		group of	felectronic	gear ratios for p	oosition con	nmand
P03.10	Denominator of electronic gear ratio 1	1~21474 83647	-	Run Settings	immediately	1000	RW
	Set the denominated division/multiplicated		st group	of electro	nic gear ratios fo	or position c	ommand

#### 4.3 Positioning function parameter setting process



#### 4.4 Introduction to inching function

The inching function is widely used in the field. The operator often uses the inching function when trying to run the material to a certain position manually. There are two types of inching: forward inching and reverse inching, which are controlled by (INFn. 09) and (INFn. 10) respectively. When enabling servo (INFn. 09) or (INFn. 10) is valid, the speed output will superimpose a inching speed P04.16 on the current speed command. (The inching function in the position mode is a little different from that in the speed mode. That is, if the multi segment position mode is used in the position mode, the inching function does not need to consider the speed command when it is enabled.)



### 4.5 Zero return function introduction

In some applications, it is often necessary to set an origin. It is required to return to zero when power on for the first time. When returning to zero, it can be calibrated with the position of the origin switch, reverse operation limit switch or forward operation limit switch, or with the current position. For various applications, our servo system has developed a variety of return to zero modes. The return to zero mode is set through P03.51. The commonly used modes are return to zero mode 17, return to zero mode 18, and return to zero mode 35. The zero return action is triggered by INFn26. After zero return, OUTFn.15 is set. After zero return, user position P03.90 is equal to zero return offset P03.55. The following describes three commonly used return to zero modes.

# (1) Homing method 17: Origin return depending on the reverse operation limit switch

Case 1: When the user triggers the execution of homing, if the negative position limit switch state is in the low level, the axis starts to move in the reverse direction at the first speed. When the negative limit switch is in the high level, the moving direction changes and starts to move at the second speed; the position when the negative limit switch state is in the low level is the zero point position.

Case 2: When the user triggers the execution of zero return, if the state of the reverse operation limit switch is at a high position, the axis starts to move forward at the second speed, and the position when the reverse operation limit switch state is at a low position is the origin position.



Homing method 17: Homing on the negative limit switch

#### (2) Homing method 18:Homing on the positive limit switch

Case 1: When the user triggers the execution of homing, if the positive position limit switch state is in the low level, the axis starts to move forward at the first speed, and when the positive position limit switch is in the high level, the moving direction changes and starts to move at second speed, and the position at the time when the positive limit switch state is at the low level is the zero point position.

Case 2: When the user triggers the execution of the zero return, if the forward running limit switch state is at a high position, the axis will directly start reverse movement at the second speed, and the position when the forward running limit switch state is at a low position is the origin position.



Homing method 18: Homing on the positive limit switch

#### (3) Homing method 35: depends on current location

In mode 35, when the user triggers the home return, the axis does not move, and the current position of the axis is considered to be the home position.

For details of the homing mode, please refer to the "Zero point homing function" section of the "VECServo Manual".

<u>Note:</u> When using the zero return mode with the operating limit limit switch (limit switch), before using the zero return function, you need to set P03.73 to 0 or 2. When setting P03.73 to 1, triggering the forward and reverse limit will cause the servo motor to enter the fault protection state directly and cannot continue to complete the zero return operation.

No.	Parameter Description	set range	unit	Set method	Effective way	Defaults	Reading and writing mode
P03.51	Zero return mode Set the zero return mode and trigger signal source.	0~99	-	Disable setting	immediately	0	RW
P03.52	Zero return acceleration and deceleration time	0~32767	ms	Run Settings	immediately	500	RW
	Set the time when th returns to zero. Theref time t=P03.53/rated sp	ore, when th	e origina		•		<b>e</b> .

**Related parameters** 

P03.53	Zero return speed of	0~32767	rpm	Run	immediately	500	RW
	the first section			Settings	inneulately		
	It is also calle	d high spe	eed ret	urn to z	zero speed.	When the	zero point
	is set, the motor	r speed is	searc	hed for	the deceler	ation por	int signal.
P03.54	Zero return speed of	0~32767	rpm	Run	immediately	100	RW
	the second section			Settings	inneulately		
	It is also called	low speed :	return	to zero s	speed. When t	he zero p	oint is set,
	the motor speed wh	nen searchi	ing the	zero po	int signal.		
					1		
P03.55	Offset after	-2147483	User	Run	immediately	0	RW
	returning to zero	647~2147	unit	Settings			
	Set the absolute	483647					
	position value of the						
	motor after zero						
	return.						
	When BIT9 of P01.4	6 is set t	o 1, th	e motor w	vill not go t	o the off:	set position
	after finding the	origin, a	and wil	1 direct	ly set the	origin to	the offse
	position. When BIT	9 of P01.4	6 is se	et to 0, 1	find the zero	point, t	ake the zer
	point as the zero	point, and	d the m	otor move	es to an offs	set positi	on.
	1		[	[	I		
P03.57	Origin range	0~32767	0.000	Run	immediately	5	RW
			1	Settings			
			week				
	When the position of				_		
	and the speed is gi	ven P09.89=	=0 under	the posi	tion ring mod	le, P03.49	time is also
	maintained, the zet	ro return c	ompleti	on signal	l is output.		

# 4.6 Zero return function setting process



# 4.7 Common input function bits

No.	Bit description
INFn.21	The position command is prohibited. When it is valid, the position command is
	prohibited to be input into the servo. It can be used for emergency stop operation.
INFn.22	The position command is reversed. If it is valid, the reverse position command is
	input into the servo.
INFn.26	Trigger return to zero
INFn.27	Trigger multi segment position command
	The rising edge triggers the execution of the multi segment position command, and
	the falling edge stops the execution of the multi segment position command, or only
	the rising edge triggers the execution of the multi segment position command, and
	the falling edge does not act. Refer to P13.92 for details
INFn.34	Zero return origin switch input
INFn.43	Position mode forward operation limit switch (forward limit switch)
INFn.44	Position mode reverse operation limit switch (reverse limit switch)

# 4.8 Common output function bits

No.	Bit description
OUTFn.1	Servo enable, output valid signal
OUTFn.13	Positioning is completed and output is completed when it is valid
OUTFn.15	The zero point return completes the output. When the encoder position of the
	motor is within the range of the origin, and the speed is given P09.89=0 under the
	position ring mode, P03.49 time is also maintained, the zero return completion
	signal is output.

# 4.9 Common setting parameters

No.	Parameter Description
P03.01	Used to select the source of the position command.
P03.02	Used to select pulse command counting mode.
P03.06	Set the time constant of median filtering at the given position
P03.07	Set the time constant of the given low-pass filter at the position
P03.08	Electronic gear ratio 1 molecule
P03.10	Denominator of electronic gear ratio 1
P03.45	Set positioning completion output conditions
P03.46	Set the positioning completion threshold
P03.49	Set the positioning completion/approaching time threshold

P03.51	Set the return to zero mode			
P03.52	Set acceleration and deceleration time for returning to zero			
P03.53	Set the homing speed of the first section			
P03.54	Set the second section return to zero speed			
P03.55	Set offset after returning to zero			
P03.57	Set Origin Range			
P13.XX	Configure parameters for multi segment position mode			

### 4.10 Common monitoring parameters

No.	Parameter Description			
P00.13	Check the motor encoder position (encoder unit)			
P03.04	Check the number of instruction pulses received			
P03.17	Position error monitoring (unit: 0.0001 circle)			
P03.90	Mechanical position (user position unit)			
P03.95	Speed command monitoring in position mode			
P03.96	Speed command monitoring after filtering in position mode			
P09.09	Real time speed monitoring			

### 4.11 Mitsubishi PLC programming case

#### 4.11.1 Positioning case (motor is 2500 line incremental encoder motor)



[Title]Multi segm	ent position	AMULTI Segment position mode is set to cyclic operation				
( 0)	M8000	Гмоv ко	D1301			
		Set the number of segments in multi segment position	o 2 segment	tes		
				-		
		[MOV K2	D1302	-		
		<wait sec<="" set="" td="" time="" to="" unit:=""><td>onds&gt;</td><td></td></wait>	onds>			
	-	[MOV K1	D1303	]		
		<set margin="" processing="" td="" to<=""><td>restart&gt;</td><td></td></set>	restart>			
	-	[моv ко	D1304	]		
		<position is="" mode="" p<="" relative="" set="" td="" to=""><td>osition mod</td><td>e&gt;</td></position>	osition mod	e>		
			D1305			
				-		
		<set comm<="" first="" of="" position="" segment="" td="" the=""><td></td><td>0&gt;</td></set>		0>		
		[DMOV K50000	D1310	]		
		<set acceleration="" first="" t<="" td="" the=""><td>ime to 500m</td><td>IS&gt;</td></set>	ime to 500m	IS>		
		[MOV K500	D1313	}		
		<set deceleration="" first="" t<="" td="" the=""><td></td><td>15&gt;</td></set>		15>		
		[MOV K500	D1390	1		
		<set first="" idle="" td="" the="" time="" to<=""><td>1s&gt;</td><td>&gt;</td></set>	1s>	>		
	-	[MOV K1	D1314	]		
		<the command="" position="" second="" segment="" td="" va<=""><td>lue is set to (</td><td>)&gt;</td></the>	lue is set to (	)>		
	-	[DMOV K0	D1315	]		
		<set of="" running="" second="" secti<="" speed="" td="" the=""><td>on as 500rpr</td><td>n&gt;</td></set>	on as 500rpr	n>		
			D1317	]		
		<set 1<="" acceleration="" second="" td="" the=""><td></td><td></td></set>				
	F	[MOV K500	D1318	}		
		<set deceleration="" second="" t<="" td="" the=""><td>ime to 500m</td><td>\$&gt;</td></set>	ime to 500m	\$>		
	-	[MOV K500	D1391	]		
		<set idle="" second="" t<="" td="" the=""><td>ime to 1s&gt;</td><td></td></set>	ime to 1s>			
		[MOV К1	D1319	]		
Title]Zero return	mode					
	M8000	<set homing="" mode=""></set>				
( 429)		[MOV K35	D351	]		
		<zero offset="" return=""></zero>				
	L	[моv ко	D355	]		
Title]Enable retu	irn to zero					
( 443)	×005		—( M66	)		
	C		18	-		
Title]Positive JO	x003					
( 293) -			—( M49	)		
itle]Reverse JOC	G X004					
( 296)			—( M50	)		



Case description:

The driver control mode is set as the position mode. The position command comes from the internal multi segment position. The pulse type is AB pulse. The electronic gear ratio is set as 1 (10000/10000). The multi segment position runs in the relative position mode (if it is an absolute position mode, it is necessary to return to zero before starting. Pay attention to whether the return to zero is successful. P03.90 should converge to the value of P03.55 (return to zero offset)), First, rotate forward for 5 cycles at the speed of 500 rpm/min and then reverse for 5 cycles at the speed of 500 rpm/min. The acceleration and deceleration time is 500 ms, and there is 1 s idle time between the two positions. Jog function can also be performed in position mode. When servo is enabled (INFn. 09) or (INFn. 10) is valid, the speed output will superimpose a jog speed P04.16 on the current speed command

X001	Enable servo driver		Reset servo driver
			(can be used to reset fault)
X003	Positive JOG button	X004	Reverse JOG button
X005	Enable return to zero	X006	Trigger multi segment position